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 Abstract

A novel Doppler spectrometer is currently being used for ion or neutral velocity

and temperature measurements on the Alcator C-Mod Tokamak.  The spectrometer has

an f/# of ~3.1 and is appropriate for visible light (3500 – 6700 Å).  The full width at half

maximum from a line emitting calibration source has been measured to be as small as 0.4

Å.  The ultimate time resolution is line brightness light limited and on the order of ms.  A

new photon efficient detector is being used for the setup at C-Mod.  Time resolution is

achieved by moving the camera during a plasma discharge in a perpendicular direction

through the dispersion plane of the spectrometer causing a vertical streaking across the

camera face.  Initial results from C-Mod as well as previous measurements from the

Compact Toroid Injection Experiment (CTIX) and the Sustained Spheromak Plasma

Experiment (SSPX) are presented.
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I.  Introduction

The velocity of neutrals and ions in all regions (edge and core) are important

quantities to measure in the study of transport in tokamaks.  An intrinsic core rotation

profile, obtained from x-ray spectroscopy, is routinely measured in Alcator C-Mod

plasmas without any particle or momentum sources 1,2,3.  This rotation seems to be related

to the Low (L) to High (H) confinement mode transition 4,5,6 as well as to the formation of

internal transport barriers 7.  The momentum in enhanced D-alpha and edge-localized

mode-free H-modes seems to propagate in from the edge by diffusion and convection

respectively 8,9,10.  An edge momentum source has been invoked to support a momentum

diffusion convection model for the results at C-Mod.  The actual measurement of the

edge parameters is still underway.  It should be noted that recently work done at

Tokamak à Configuration Variable (TCV) has found the absence of an edge momentum

source in its Ohmic L-mode 11.  This  possible edge  momentum source is still not

understood.  The extension of the investigation of the intrinsic core rotation to the edge is

a subject of great interest.

The electron temperature around the last closed magnetic flux surface (LCFS)

ranges from a few eV to a few 100 eV on the Alcator C-Mod Tokamak.  The most

abundant charge states in the edge plasma include, but are not limited to a few time

ionized B, Ar, O as well as neutral D, and He.  Visible lines fed from metastable levels

are convenient for measuring Doppler width and shifts at the plasma edge to obtain the

velocity and temperature, respectively.  A novel high throughput Doppler spectrometer

has been installed on the Alcator C-Mod tokamak for plasma rotation measurements.
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Details of a previous version of the spectrometer based on a design used at the Livermore

high energy electron beam ion trap (SuperEBIT)15 have been presented in Ref. 16.  The

current version gives a single line integrated spectrum every 4 ms, with a possible

instrument function full width at half maximum (FWHM) of  0.4 Å and a spectral

bandpass of ~ 150 Å.

Measurements with the Doppler spectrometer presented here were done at three

facilities: the Compact Toroid Injection Experiment (CTIX)13, the Sustained Spheromak

Plasma Experiment (SSPX)14 and the Alcator C-Mod tokamak.  These illustrate the utility

of the instrument and the adaptations needed to observe plasma with very different time

scales.

II.  Compact Toroid Injection Experiment

The Compact Toroid Injection Experiment (CTIX)13 is a plasma accelerator based

on the design of a Marshall gun 17.  Beyond a test bed for various basic plasma physics,

its original purpose was to be used as a fueling mechanism for magnetic confinement

devices.  It is a coaxial pipe arrangement where the plasma is formed on one end between

an inner and outer conductor.  The plasma ring with its self-sustaining toroidal and

poloidal magnetic fields is then accelerated down the pipe by a JXB force.  The current is

flowing from the outer to the inner conductor through the plasma itself.  The velocity of

the compact toroid is typically 200 km/s according to a time of flight measurement of

magnetic signals propagating down the gun.  A typical shot lasts only 40 – 50 _s.  It was

necessary to use a single frame intensified CCD to obtain spectra in 1-2 _s increments.

Fortunately, the plasma is fairly repeatable and it is possible to build a time history
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progressively.  First, in order to decide what impurities were present, a high resolution

spectral survey covering (3600 to 6700 Å) was performed.  This was done on a shot to

shot basis owing to the 150 Å band pass per exposure.  A spectrally rich region

containing He II (4686 Å), N II (4630 Å) and O II (4649 Å) was then used for sight line

integrated velocity measurements.  An input fiber optic to the spectrometer was arranged

to look down the barrel of the gun so as to create blue shifted spectra.  One spectrum was

taken every 1.5 _s for the first 19 _s of progressive shots.  Additional, zero velocity, un-

shifted, reference spectra were obtained by looking transversely to the plasma motion.

The line integrated average velocity data is seen in Figure 1.  We note that the He II

velocity peaks very early at 1.5 _s with a maximum of ~ 50 km/s.  There is a second

peaking at 14 _s with a velocity ~ 70 km/s.  This second peaking is coincident with the

plasma torus leaving the inner conductor and entering the drift section of the accelerator.

There is a re-strike in the formation section of the gun at this point due to the ringing of

the rail gun circuit.  The maximum velocity measured by spectroscopy is much less than

the 200 km/s measured from the time of flight magnetic probes.  A possible explanation

for the discrepancy is that as the plasma advances, the abundance of He II decreases.

Photodiodes with filters for this region of the spectrum were placed along the gun

transversely.  It was seen that the He II signal did indeed decrease significantly as the

plasma propagated down the gun.  The peak electron temperatures of ~55 eV suggests

that the He nucleus is eventually bare and therefore unseen by the spectrometer.

Recombination rates for He II are too small for this effect to be significant before the shot

is over.  This allows for the further acceleration seen by the magnetics.  Also, it is

significant that the other heavier impurities seem to accelerate only moderately.  If this



6

6

device is to be used as a fueling mechanism one wants only the relatively light

(Deuterium) fuel to be injected while leaving the heavier impurities in the gun.

III.   Sustained Spheromak Plasma Experiment
The Sustained Spheromak Plasma Experiment (SSPX)14 is an alternative magnetic

confinement device, which uses the naturally occurring magnetic dynamo within the

plasma for the generation of the main confinement field.  This removes the need of

complicated and expensive toroidal field coils as on a tokamak.  This also lends itself to a

sustained plasma because the duration of the plasma can be potentially maintained

through helicity and fuel injection.  While the experimental development is less

complicated than most other approaches the plasma itself being self maintained is more

difficult to understand and control.  The plasma discharges are typically of H and last a

maximum of 3 ms.  The electron temperatures and densities reach peak values of 120 eV

and 4x1020 m-3  respectively 18.  The shot was thought to be long and dense enough to

allow the testing of an NMOS array of photodiodes 16.  A fiber optic line was connected

to a telescopic view at the mid-plane of the spherical plasma chamber.  Multiple spectra

were taken looking radially inward and in opposite toroidal directions. The time and line

integrated Doppler shifts in an O III feature around 3759 Å were recorded.  The results

show that there was indeed toroidal rotation with velocities up to ~20 km/s (Figure 2).

This interestingly correlates in both direction and magnitude to the toroidal propogation

of the n=1 mode.  We also  measured the neutral temperature of H, which was typically a

shot and space averaged value of a few eV.  Unfortunately, the NMOS photodiode array

was determined to have insufficient sensitivity, precluding efforts to obtain time resolved

measurements.
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IV.  Alcator C-Mod Tokamak

Alcator C-Mod is a compact, high magnetic field, high power and particle density

diverted and shaped magnetic confinement experimental facility 19,20.  Typical operational

parameters of C-Mod include, a major and minor radius of 0.68 and 0.22 m, a peak

plasma current, Ip ~ 2 MA, a maximum toroidal magnetic field, Bt ~ 8 T, an electron

density, ne of order 1021 m-3, a peak electron temperature, Te of 5 keV, a shot duration of

up to 4 s and finally up to 6 MW of available RF power.  This machine is a unique test

bed for the burning plasma effort.  The feature most relevant to ion and neutral velocity

measurements is that the external auxiliary power is from Radio Frequency (RF)

antennas.  This means that the plasma heating mechanism is not a source of particles or

momentum.  The result is a reduction in the complexity of momentum and particle

transport studies.  Further, the situation is very much as it would be in a working reactor

where the alpha particles are the primary heating mechanism.

In 2005, a time integrated spectral survey was recorded progressively using both

divertor views and toroidal views from the inner wall just outside the separatrix.  The

visible survey is dominated by the Deuterium Balmer series.  There are available some

relatively dim features from B+4 (4945 Å) and B+1 (4940 Å) that exist because of the

boronization process used to reduce other impurities in the bulk plasma.  The B lines are

prime candidates for Doppler measurements.     

Employing a Princeton Instruments PISX camera, we were ableto achieve a light

limited time resolution of ~ 30 ms/frame for the boron features.  Faster scans down to 8
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ms/frm have been recorded.  Unfortunately the feature(s) of interest were bright enough

only for portions of the discharge.  The camera is LN2 cooled and has 1300x1340, 20 _m

square pixels.  It has a very slow (~ 1 min for ~1 in2 chip) readout, however time

resolution is achieved by moving the camera during a plasma discharge in a

perpendicular direction through the dispersion plane of the spectrometer causing a

vertical streak across the camera face.  The time resolution is determined by the speed of

the vertical motion and the vertical height of the image (typically 75 _m).  The vertical

motion of the detector including the position and velocity is recorded.  Multiple toroidal,

poloidal and divertor views are available to fiberoptically connect to the tokamak.  The

data shown in Figs. 3 and 4 used a toroidal inner wall view just outside the LCFS (R  =

42 cm).  Zeeman splitting, dominated by the two _ components that result from looking

nearly parallel to an ~4 T magnetic field, is present.  The line fitting function for each

feature is a sum of two displaced Gaussians each convolved with a single Gaussian

representing the instrument function.  An example fit is seen in Fig. 3.  Velocity

temperature and amplitude from the 2s3d 1D2 – 2s3d  1F2 transition in B+1 at 4940.38 Å,

using 30 ms/frm is shown in Fig. 4.  The error in the measurements includes only the

statistical contribution.
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 Captions

Figure 1:  Average line integrated impurity velocity vs time of He II, N II and O II from

visible spectroscopy in the compact toroid plasma accelerator.

Figure 2:  Average line integrated impurity velocity of O III from visible spectroscopy in

the Sustained Spheromak Plasma Experiment.  The rotation is clockwise from above.

Opposing toroidally oriented views were chosen looking clockwise (CW) and counter

clockwise (CCW) from above.

Figure 3:  Representative fit of 2s3d 1D2 – 2s3d  1F2 from B+1 at 4940.38 Å.  Also included

in the fit is the less intense B+4 n=7-6 transition at 4944.6 Å.  Each is Zeeman split from

looking nearly parallel to ~ 4 T magnetic field lines.  The features are fit using the sum of

two displaced Gaussians each convolved with a single Gaussian instrument function.

Figure 4:  Velocity, temperature and amplitude as a function of time for B+1  at 4940.38 Å

for shot 1060314012.  The error bars in velocity and temperature reflect only the statical

contribution  (Top) Velocity in km/s. (solid) the average of the two Zeeman _ peaks is

used as the shifted position (dash) the contribution of the individual components to the

Doppler shift.  (Ideally they should all be the same)  (Middle)  Ion temperature in eV

(Bottom)  Amplitude in counts.
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Fig1
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Fig2
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Fig 3
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Fig 4
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